砷元素阅读:2646发布时间:2019/10/29
砷是一种广泛分布于自然界的元素。
克拉克值为5×10-4,宇宙丰度为4.0。
除发现少量的天然砷外,已知有150多种含砷矿物。
*普通的矿物是:砷化物矿,硫化物矿,氧化物矿,砷酸盐矿。
此外,海水中平均含有1.1mgL-1的砷,在矿泉水、土壤和人体中都有微量的砷。
近年来,由于采煤及其它工业污染,使地下水中砷的浓度不断增加,砷污染已经成为一个潜在的公共卫生问题,亚洲地区特别是孟加拉国地下水的砷污染问题已经受到社会特别的关注。
据卫生部的统计,我国目前有11个省的部分地区受到地下水中砷的污染,比较严重的山西、内蒙、贵州等地区已经出现严重的地方性砷中毒。
由于饮用水中含有的砷超过一定限量会引起慢性中毒,因此世界卫生组织规定生活饮用水安全标准为每升含砷不超过0.05毫克。
2001年1月,EPA提出一个新的标准,即生活饮用水标准每升含砷不超过0.01毫克,并决定从2006年起实施,欧盟也计划实行这一标准。
但是,对发展中国家来说,要按照这一新标准控制饮用水中的砷含量尚有一定困难,2004年由世界卫生组织、儿童基金会和世界银行联合在我国太原召开的有关减轻砷中毒为主题的大会上,亚洲各国仍建议延缓启动新标准。
除饮用水外,在所有的生物中都可以检出低含量的砷,海洋动物中存在的高含量砷是人们特别关注的问题。
***农业行业标准(NY5073)规定鱼中无机砷含量不得超过0.5毫克/公斤,其它水产品中含量不得超过1.0毫克/公斤。
这一规定实际存在一定的执行难度,因为国标目前推荐的方法只能测定总量,不能区分砷的形态,而由于鱼和其它海产品中大部分砷是无毒的有机砷化合物,可达几十个毫克/公斤,因此,测量结果偏高的现象时有发生。
例如2004年在香港媒体上报道多次的鱼罐头事件,就是因为检出了其中高含量的砷,引起规模超过5亿元的内地鱼罐头产业近来一直不景气。
实际上,国内绝大多数产品并未超标,只是检测方法存在问题罢了。
由此可见,区分砷元素不同形态的检测方法的研究是十分重要的。
在自然界,砷元素可以以许多不同形态的化合物存在,在空气、土壤、沉积物和水中发现的主要砷化物有As2O3或亚砷酸盐(As Ⅲ)、砷酸盐(As Ⅴ)、一甲基砷酸(MMA)和二甲基砷酸(DMA),在海产品中则主要以砷甜菜碱(AsB)和砷胆碱(AsC)形式存在。
另外,还有其他更复杂的砷化合物,例如砷糖(Arsenosugars)、砷脂类化合物等。
主要砷化物对大鼠的半致死量LD50(mg kg)分别为:As2O3 34.5,亚砷酸盐(As III)14,砷酸盐(As V)20,MMA 700-1800,DMA 700-2600,AsC 6500,AsB10000。
这些数据表明,无机砷的毒性,甲基化砷的毒性较小,而AsB、AsC和砷糖常被认为是无毒的。
正是由于各种不同形态的砷具有不同的物理及化学性质,例如各种不同形态的砷具有不同的毒性,因此砷的形态分析才越来越为人们所重视。
由于不同形态砷化物的毒性不同,其在人体内的迁移、转化和代谢规律就与其致毒和去毒的机理有关。
砷在体内的代谢过程一般为:As(III)→As(V)→MMA→DMA→尿排出,而AsB在体内不经任何转变即排出。
这说明As(III)→DMA是主要的去毒过程。
在致毒方面,亚砷酸盐通过阻止含邻位巯基的酶在活性中心作用而表现其急性毒性,而砷酸盐由于其结构与磷酸盐类似,在ATP形成过程中可取代磷酸盐而破坏磷酰化作用。
另外,不同形态的砷化物对农作物生长及产量都有明显的影响。
因此无论对环境样品、食品,还是对从事与砷有关的工作人员或砷中毒患者的体液进行砷的形态分析都是有必要的。
传统方法中,只测定样品中的总砷量,不能给出有关毒性的确切信息。
因此,从正确估计砷对环境及人类的危害角度出发,需要建立一种有效地分离、测试各种形态砷化合物的手段。
另外对于砷在环境中的循环、转化机理的研究也要求对其进行形态分析。
砷元素的形态及其特性